Home

amiratag/DataShapley: Data Shapley: Equitable Valuation of Data for Machine Learning

icon
https://github.githubassets.com/favicons/favicon-dark.svg
Rating
B
Url
https://github.com/amiratag/DataShapley
content image
https://opengraph.githubassets.com/f7eaf9e67a6d77ecf49cc4e2f2790d118010f21690484da7db18504cbe8a3b6f/amiratag/DataShapley
Notes
Valuing data using now famed shapleys
Retrieved
10/28/2021, 12:49:21 PM
Type
Code

Data Shapley: Equitable Valuation of Data for Machine Learning

Please cite the following work if you use this benchmark or the provided tools or implementations:
@inproceedings{ghorbani2019data, title={Data Shapley: Equitable Valuation of Data for Machine Learning}, author={Ghorbani, Amirata and Zou, James}, booktitle={International Conference on Machine Learning}, pages={2242--2251}, year={2019} }
Plain Text

Prerequisites

Python, NumPy, Tensorflow 1.12, Scikit-learn, Matplotlib

Basic Usage

To divide value fairly between individual train data points/sources given the learning algorithm and a meausre of performance for the trained model (test accuracy, etc)

Authors

Amirata Ghorbani - Website
James Zou - Website

License

This project is licensed under the MIT License - see the LICENSE.md file for details
TOP