Home

Robust Distortion Risk Measures

Author
Carole Bernard, Silvana M. Pesenti, Steven Vanduffel
Date Updated
2022/05/19
Category
q-fin.RM
Date Published
2022/05/18
Date Retrieved
2022/05/19
Description
The robustness of risk measures to changes in underlying loss distributions (distributional uncertainty) is of crucial importance in making well-informed decisions. In this paper, we quantify, for the class of distortion risk measures with an absolutely continuous distortion function, its robustness to distributional uncertainty by deriving its largest (smallest) value when the underlying loss distribution has a known mean and variance and, furthermore, lies within a ball - specified through the Wasserstein distance - around a reference distribution. We employ the technique of isotonic projections to provide for these distortion risk measures a complete characterisation of sharp bounds on their value, and we obtain quasi-explicit bounds in the case of Value-at-Risk and Range-Value-at-Risk. We extend our results to account for uncertainty in the first two moments and provide applications to portfolio optimisation and to model risk assessment.
Image
Arxiv Screen
Posts
23
Readers
0
Score
0.5
Tweeters
2
URL
https://arxiv.org/abs/2205.08850
Property
Empty
TOP